Находим седловые точки на поверхности
Седловые точки на поверхности напоминают точки перегиба на плоской кривой. В седловых точках обе частные производные функции двух переменных равны нулю. Говорят, что выполнены необходимые условия существования экстремума. Но, в этих точках не выполняются достаточные условия. Задачу можно решить аналитически, находя частные производные первого и второго порядка. Но, задачу можно решить с помощью решателя. Еще и рисунок получить сразу с изображением этой седловой точки так же как на рисунке слева. Для решения введите команду saddle points и вашу функцию двух переменных. Нажмите кнопку Решить. Пример команды - внизу. Кроме пространственного рисунка вы получите еще и контурный с указанием седловых точек. А также координаты интересующих вас точек.
saddle points of x^3 - y^3 - 2xy + 6