Как обманывают в школе
ДЕЛИТЬ НА НОЛЬ НЕЛЬЗЯ
Что значит 5 – 3? Надо взять пять предметов, отнять (убрать) три из них. Но математики смотрят на эту задачу иначе. Нет никакого вычитания, есть только сложение. Поэтому 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 — это сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.Странная, вообще говоря, позиция: "нет никакого вычитания". Может и нет, но это еще больше запутает школьника. Но оказывается еще математики не знают отрицательных чисел и сложение положительного и отрицательного: 5+(-3) для математиков понятие не постижимое. Зато знают уравнения, которые якобы можно решать без отрицательных чисел, а просто так "подбором подходящего числа". Как потом учитель будет объяснять как решаются уравнения трудно даже представить. Дальше, там же, анализируется деление с тех же позиций тех же якобы математиков.
Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8. Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения. Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.Особенно тут радует фраза: "Это неотъемлемое свойство нуля, строго говоря, часть его определения". А никто и не собирается у нуля отнимать его свойства. Ну и дальше, уже для особо одаренных особый случай, что явно не порадует и не добавит понимания школьнику.
А можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0 : 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0 : 0 = 1? Но ведь так можно взять любое число и получить 0 : 0 = 5, 0 : 0 = 317 и т. д. Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла.Такое объясненение, хоть и содержит ляпы, но все же лучше, чем просто утверждение, что делить нельзя и все. Тем не менее, это не наилучший вариант объяснения для школьников, которым надо понять еще и смысл уравнения:
Умножение можно заменить многократным сложением. Например, вместо умножения четверки на двойку можно четыре раза сложить двойку:
$$4\cdot2=2+2+2+2=8$$
А деление можно заменить вычитанием. Вместо деления будем из восьмерки четыре раза вычитать двойку пока не получится ноль. Сколько раз вычитали двойку, тому и равен результат деления. В данном случае это было сделано четыре раза:
$$\frac{8}{2}\Rightarrow 8-2-2-2-2=0$$
А теперь рассмотрим случай деления на ноль. Следуя предыдущему правилу замены деления вычитанием, необходимо из делимого вычитать делитель (ноль) до тех пор пока не получится ноль. А это не случится никогда:
$$\frac{8}{0}\Rightarrow 8-0-0-0-0....=?$$
Вот почему число на ноль разделить не получится. Очень коротко, понятно, просто. Если же ноль надо разделить на ноль, то ноль из нуля можно вычитать любое число раз, а значит результат будет любым. И не надо при этом говорить, что в этом случае деление не возможно. Лучше честно сказать, что этим случаем занимается высшая математика. Но объяснение можно все-таки привести (смотри ниже) и оно будет понятно школьнику. Кстати, именно это объснение позволит построить мостик к пониманию бесконечности, о которой говорят уже студентам в курсе высшей математики, когда приходится делить на ноль, а точнее на величину бесконечно близкую к нулю. Хоть эта величина и близка к нулю, но все таки она не равна нулю, а только стремится к нулю: \(\varepsilon \rightarrow 0\). И если из некоторого числа (например, 8-ми) вычитать эту бесконечно малую величину, то ее придется вычесть бесконечное (или очень большое) число раз, чтобы делимое, из которого вычитают, приблизилось к нулю:
$$\frac{8}{0}\Rightarrow 8-\varepsilon -\varepsilon -\varepsilon -\varepsilon ....-\varepsilon \rightarrow 0$$
Поэтому и результат деления восьмерки на ноль (или почти ноль) будет равен бесконечности (очень большому числу - для школьников).
В этом объяснении никаких уравнений, никаких иксов, а понятные и доступные любому школьнику арифметические операции: сложение и вычитание. И, самое главное, в этом объяснении - правда и подготовка к пониманию высшей математики. Принимаем критику, комментарии и ваши варианты.
© Цитирование и копирование только со ссылкой на Studlab.com.
Сначало делается УМНАЖЕНИЕ!
Имелось в виду:
6/5 = 6-1,2-1,2-1,2-1,2-1,2
Ваша попытка назвать деление последовательным вычитанием - софистика. Деление это определение размера части 1/2, 1/4 и тд. В случае с умножением вы берете данные для сложения из самого примера (четыре надо сложить два раза), а при делении у вас такого нет. Для того, чтобы начать последовательно вычитание вам сначала придется все равно выполнить деление (выделить эту самую часть).
Откуда вы возьмете данные для решения 6/5?
6/5 = 6-1,5-1,5-1,5-1,5-1,5. Откуда взялись 1,5? Правильно! После предварительного деления.